期刊专题

10.3778/j.issn.1002-8331.1905-0169

基于多尺度的贝叶斯模型显著性检测

引用
针对传统基于贝叶斯模型的显著性检测算法存在准确率不理想的问题,提出了一种基于多尺度的贝叶斯模型显著性检测算法.通过超像素分割算法(SLIC)将原图分割成不同尺度的超像素,根据超像素边界信息得到背景种子,进而通过距离计算和多尺度融合得到背景先验;对原图进行颜色增强,采用Harris算子对增强图进行检测角点求得凸包,融合不同尺度下的超像素得到凸包先验;融合背景先验和凸包先验得到最终先验;利用颜色直方图和凸包计算似然概率;将最终先验和似然概率通过贝叶斯模型计算显著图.在公开数据集MSRA1000、ECSSD上与多种传统算法进行准确率和召回率对比,该算法有更好的表现.

显著性检测、多尺度、背景种子、先验概率、贝叶斯模型

56

TP391.41(计算技术、计算机技术)

国家自然科学基金;江苏省研究生创新计划项目

2020-06-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

207-213

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn