期刊专题

10.3778/j.issn.1002-8331.1903-0053

改进果蝇算法优化CIAO-LSTM网络的时序预测模型

引用
为了提高时间序列的预测精度,提出了一种基于改进果蝇算法优化直连长短期记忆网络的时间序列预测方法.将长短期记忆网络的多个时间步输入与输出进行全连接(CIAO-LSTM,直连长短期记忆网络),增强了对目标系统中线性成分的表征.提出了一种改进的果蝇优化算法(IFOA),通过动态改变果蝇的搜索半径和对适应度函数增加逃脱系数,提高了果蝇优化算法的全局寻优能力和局部收敛速度.使用IFOA优化CIAO-LSTM网络参数并构建预测模型(IFOA_CIAO-LSTM).实验结果表明,优化后的时序预测方法相比传统的长短期记忆网络泛化能力更强、预测精度更高,对于波动较大的数据可以实现更好的拟合.

改进果蝇优化算法、直连长短期记忆网络、时序预测、预测精度

56

TP301.6(计算技术、计算机技术)

国家青年科学基金;山西省科技攻关项目

2020-06-10(万方平台首次上网日期,不代表论文的发表时间)

共6页

129-134

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn