期刊专题

10.3778/j.issn.1002-8331.1902-0102

基于行为路径树的恶意软件分类方法

引用
针对恶意软件家族分类问题,提出一种基于行为路径树的恶意软件分类方法,该方法使用恶意样本细粒度行为路径作为动态特征,通过将路径转化为树型结构的方式生成依赖关系,与传统基于系统调用的恶意软件分类相比,具有较低的复杂度.此外,针对传统分类模型无法解决行为路径树深度寻优问题,设计了基于自适应随机森林的分类模型,该模型采用随机逼近的方式完成行为路径树深度寻优.实验部分使用2588个样本(包含8个恶意家族,1个良性集合)对行为路径树的有效性进行验证,分类精度达到91.11%.

行为路径树、恶意软件分类、动态特征、自适应随机森林

56

TP309.5(计算技术、计算机技术)

国家重点研发计划项目;国家自然科学基金通用研究联合基金课题;山西省自然科学基金重点基金项目

2020-06-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

98-104

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn