期刊专题

10.3778/j.issn.1002-8331.1901-0398

融合相关粒子滤波目标跟踪算法

引用
相关滤波算法因其优越的高效性和鲁棒性被广泛应用于目标跟踪领域,但是该算法无法很好地处理目标遮挡和尺度变化等问题.针对该现象,提出了一种融合相关粒子滤波目标跟踪算法,该算法采用多个相关滤波器,学习到更多目标信息和背景信息,提高了目标与背景辨识度,并且引进了粒子滤波随机采样策略,在目标离开遮挡物时能够快速捕捉到目标.在尺度估计中引入了多尺度因子,对定位到的目标进行多尺度缩放,选用与滤波器响应值最大区域对应的尺度因子作为缩放比例,从而对目标进行尺度更新;粒子滤波算法随着粒子数目的增加,其计算量也随着增加,针对该问题,提出了基于粒子繁衍的重采样算法,在跟踪效率上做了提升.对提出的算法进行了三部分对比实验,实验结果验证了提出算法在处理目标遮挡和尺度变化问题上的有效性.

目标跟踪、相关滤波、粒子滤波、尺度估计、目标遮挡

56

TP391.4(计算技术、计算机技术)

湖北省自然科学基金No.2017CFB302

2020-04-09(万方平台首次上网日期,不代表论文的发表时间)

共9页

184-192

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn