期刊专题

10.3778/j.issn.1002-8331.1908-0033

结合迁移学习模型的卷积神经网络算法研究

引用
针对传统的卷积神经网络算法在训练集与测试集分布不同时分类精度较低且标注成本较高的问题,提出结合迁移学习模型的卷积神经网络算法.使用主成分分析算法对源域数据进行无监督降维,同时结合自编码机算法对目标数据集降维,使源域和目标数据集在低维度下具有相似的特征分布;根据卷积神经网络特征提取的特点,利用JS散度来判别卷积池层能否迁移,并使用初始化的隐藏层补全trCNN模型;使用少量带标注的目标数据集进行训练,完成分类模型的构建.设计实验验证分类模型能够在使用少量标注数据情况下准确地完成分类工作.

主成分分析、自编码机、卷积神经网络、迁移学习

56

TP391(计算技术、计算机技术)

吉林省科技发展计划技术攻关项目;吉林省教育厅"十三五"科学技术项目

2020-03-31(万方平台首次上网日期,不代表论文的发表时间)

共6页

43-48

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn