期刊专题

10.3778/j.issn.1002-8331.1906-0417

基于聚类和用户偏好的协同过滤推荐算法

引用
协同过滤推荐算法使用评分数据作为学习的数据源,针对协同过滤推荐算法中存在的评分数据稀疏以及算法的可拓展性问题,提出了一种基于聚类和用户偏好的协同过滤推荐算法.为了挖掘用户的偏好,该算法引入了用户对项目类型的平均评分到评分矩阵中,并加入了基于用户自身属性的相似度;同时,为了降低数据稀疏性,该算法使用Weighted Slope One算法填充评分数据中的未评分项,并通过融入密度和距离优化初始聚类中心的K-means算法聚类填充后的评分数据中的用户,缩小了相似用户的搜索空间;最后在聚类后的数据集中使用传统的协同过滤推荐算法生成目标用户的推荐结果.通过使用MovieLens100K数据集实验证明,提出的算法对推荐效果有所改善.

协同过滤、k-means聚类、用户偏好、相似度、Weighted Slope One算法

56

TP391(计算技术、计算机技术)

浙江省自然科学基金No.LZ14F020001

2020-04-01(万方平台首次上网日期,不代表论文的发表时间)

共6页

68-73

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn