期刊专题

10.3778/j.issn.1002-8331.1709-0453

基于数据场的改进LOF算法

引用
LOF(Local Outlier Factor)是一种经典基于密度的局部离群点检测算法,为提高算法的精确度,以便更精准挖掘出局部离群点,在LOF算法的基础上,提出了一种基于数据场的改进LOF离群点检测算法.通过对数据集每一维的属性值应用数据场理论,计算势值,进而引入平均势差的概念,针对每一维度中大于平均势差的任意两点在计算距离时加入一个权值,从而提高离群点检测的精确度,实验结果表明该算法是可行的,并且拥有更高的精确度.

数据挖掘、局部可达密度、数据场、平均势差、局部离群因子

55

TP311;TP18(计算技术、计算机技术)

国家自然科学基金71363040

2019-10-30(万方平台首次上网日期,不代表论文的发表时间)

共5页

154-158

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

55

2019,55(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn