期刊专题

10.3778/j.issn.1002-8331.1810-0284

变分自编码器模型综述

引用
变分自编码器(VAE)作为深度隐空间生成模型的一种,近年来其表现性能取得了极大的成功,尤其是在图像生成方面.变分自编码器模型作为无监督式特征学习的重要工具之一,可以通过学习隐编码空间与数据生成空间的特征映射,进而在输出端重构生成输入数据.梳理了传统变分自编码器模型及其衍生变体模型的发展与研究现状,并就此做了总结和对比,最后分析了变分自编码器模型存在的问题与挑战,并就可能的发展趋势做了展望.

深度隐空间生成模型、无监督学习、变分自编码器、图像生成

55

TP181(自动化基础理论)

国家自然科学基金61502262

2019-10-30(万方平台首次上网日期,不代表论文的发表时间)

共9页

1-9

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

55

2019,55(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn