期刊专题

10.3778/j.issn.1002-8331.1705-0135

基于心冲击信号的睡姿识别

引用
研究证明,睡眠质量与睡姿有着密切关系,不良的睡姿甚至会加剧多种疾病的潜在风险.为了更精准地进行睡眠健康监控,提出了一种基于心冲击(BCG)信号的睡姿模式识别算法,使用非接触、无干扰的压电薄膜传感器采集BCG信号,在腰腹部采集仰卧、俯卧、左侧卧和右侧卧4种睡姿信号,经小波变换降噪等预处理后提取基于J波的特征值,设计并比较基于神经网络和KNN的睡姿识别分类器.实验结果表明,神经网络睡眠识别算法的平均正确识别率为93%,KNN算法为84%,因此基于BCG信号的神经网络睡姿识别算法可以广泛用于睡眠监测应用.

心冲击信号、小波变换、特征提取、神经网络、睡姿识别

54

TP399(计算技术、计算机技术)

浙江省自然科学基金LQ16H180004;浙江新苗人才计划ZX15046032

2018-09-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

135-140

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

54

2018,54(17)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn