期刊专题

10.3778/j.issn.1002-8331.1704-0015

粪便镜检图像中红白细胞的分割与识别方法

引用
针对粪便镜检图像中具有弱边界的红、白细胞的识别问题,研究了基于Chan-Vese模型的兼顾邻域区域边缘和纹理综合信息的分割方法.用八向Sobel弥补透明细胞的模糊边缘,通过细胞域内纹理和边缘信息互补而采用兼顾全局和局部能量分布的Chan-Vese模型的分割方法,并采用具备更好的数据泛化作用的随机决策森林进行分类.实验证明,提出的兼顾边界与域内纹理的改进型Chan-Vese分割方法使粪便镜检图像中红、白细胞的分割精度达到了95.3%.该方法对粪便镜检图像中的有形物体具备更高的分辨能力和光学环境适应性.

粪便镜检图像、图像分割、结构张量、Chan-Vese模型、随机决策森林

54

TP391.41(计算技术、计算机技术)

国家自然科学基金61262031,61263032

2018-08-23(万方平台首次上网日期,不代表论文的发表时间)

共6页

203-208

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

54

2018,54(15)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn