期刊专题

10.3778/j.issn.1002-8331.1610-0330

基于用户谱聚类的Top-N协同过滤推荐算法

引用
传统的协同过滤推荐算法为目标用户推荐时,考虑了所有用户的历史反馈信息对物品相似度的影响,同时相似度的度量仅依靠用户评分信息矩阵,导致了推荐效果不佳.为解决上述问题,提出了基于用户谱聚类的Top-N协同过滤推荐算法(SC-CF),即应用谱聚类将兴趣相似的用户分成一类,具有相似兴趣爱好的用户比其他用户具有更高的推荐参考价值,然后在类中为目标用户推荐.SC-CF+算法在SC-CF算法的基础上,在相似度度量方法中分别引入了物品时间差因素、用户共同评分权重、流行物品权重.实验结果表明,提出的两种算法提高了推荐结果的召回率.

协同过滤、相似度、历史反馈信息、谱聚类、召回率

54

TP301.6(计算技术、计算机技术)

2018-05-11(万方平台首次上网日期,不代表论文的发表时间)

共6页

138-143

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

54

2018,54(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn