期刊专题

10.3778/j.issn.1002-8331.1708-0258

融合深度学习与最大间距准则的人脸识别方法

引用
当前,人脸识别技术遇到的突出问题是光照、姿态、遮挡和表情等因素所引起的识别精度的下降,这些问题是人脸识别系统不完美的主要原因,深度学习是一种新的方法,可有效解决这些问题.首先通过引入深度学习算法进行多层次的学习,然后提取高层特征进行人脸描述,最后应用最大间距准则减小最小二乘估计产生的重建误差,实现有效的面部识别分类.该算法在ORL、CAS-PEAL和扩展Yale-B人脸数据库中进行了不同光照、姿态、遮挡、表情和容貌特征变化条件下的仿真实验.结果表明,所提出的算法比传统线性分类算法具有更高的效率和准确度.

人脸识别、深度学习、最大间距准则、最小二乘估计

54

TP391.4(计算技术、计算机技术)

国家自然科学基金61403123;河南省高校科技创新人才支持计划17HASTIT020

2018-03-29(万方平台首次上网日期,不代表论文的发表时间)

共5页

206-210

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

54

2018,54(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn