期刊专题

10.3778/j.issn.1002-8331.1610-0055

中心约束的跨源学习可能性C均值聚类算法

引用
可能性C均值聚类算法(Possibilistic C-Means,PCM)相比于模糊C均值聚类算法(Fuzzy C-Means,FCM),能更好地处理含有噪音和例外点的数据,但在处理数据粘性较强的数据集时,PCM算法的聚类中心趋于一致,从而导致聚类算法直接失效.针对这个问题,提出了中心约束准则与跨域迁移学习准则,并将其应用到可能性C均值算法中,从而提出一种具有中心约束能力的聚类算法,简称中心约束的跨源学习聚类算法,改进后的算法能够利用跨域知识进行辅助聚类,确保类中心相互远离,从而能够保证算法的聚类性能.通过模拟数据集和真实数据集的实验,验证了该算法的上述优点.

迁移学习、类中心约束、可能性C均值算法

54

TP311.1(计算技术、计算机技术)

江苏省自然科学基金BK20151131;中央高校基本科研业务费专项资金JUSPR51614A

2018-03-29(万方平台首次上网日期,不代表论文的发表时间)

共7页

72-78

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

54

2018,54(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn