期刊专题

10.3778/j.issn.1002-8331.1708-0195

基于深度卷积神经网络的道路场景理解

引用
在无人驾驶技术中,道路场景的理解是一个非常重要的环境感知任务,也是一个很具有挑战性的课题.提出了一个深层的道路场景分割网络(Road Scene Segmentation Network,RSSNet),该网络为32层的全卷积神经网络,由卷积编码网络和反卷积解码网络组成.网络中采用批正则化层防止了深度网络在训练中容易出现的"梯度消失"问题;在激活层中采用了Maxout激活函数,进一步缓解了梯度消失,避免网络陷入饱和模式以及出现神经元死亡现象;同时在网络中适当使用Dropout操作,防止了模型出现过拟合现象;编码网络存储了特征图的最大池化索引并在解码网络中使用它们,保留了重要的边缘信息.实验证明,该网络能够大大提高训练效率和分割精度,有效识别道路场景图像中各像素的类别并对目标进行平滑分割,为无人驾驶汽车提供有价值的道路环境信息.

深度学习、卷积神经网络、场景理解、语义分割

53

TP181(自动化基础理论)

国家自然科学基金10872160

2017-12-14(万方平台首次上网日期,不代表论文的发表时间)

共8页

8-15

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

53

2017,53(22)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn