10.3778/j.issn.1002-8331.1705-0377
面向情感语音识别的非线性几何特征提取算法
针对现有时域、频域属性特征在区分情感状态上存在的局限性,提出一种基于相空间重构理论的非线性几何特征提取方法.首先,通过分析情感语音信号的最小延迟时间和嵌入维数来实现相空间重构;其次,在重构相空间下分析并提取基于轨迹描述轮廓的五种非线性几何特征;最后,结合韵律特征、MFCC特征和混沌特征,设计实验方案验证所提特征区分情感状态的能力并通过特征选择获得情感信息完整的最优特征集合.选用德语柏林语音库中的五种情感(高兴、悲伤、中性、愤怒、害怕)作为实验数据来源,支持向量机作为识别网络.实验结果表明:与韵律特征、MFCC特征和混沌特征相比,所提特征不仅可以有效地表征语音信号中的情感差异性,也能够弥补现有特征在刻画情感状态上的不足.
相空间重构、情感语音识别、非线性几何特征、特征选择、最优特征集合
53
TN912.34
国家自然科学基金61371193
2017-11-13(万方平台首次上网日期,不代表论文的发表时间)
共6页
128-133