期刊专题

10.3778/j.issn.1002-8331.1611-0487

一种基于中心极大团扩展的社区挖掘算法

引用
社区挖掘是复杂网络分析中的一项重要工作,目前已提出多种社区挖掘算法,但多数算法是通过节点间的连接关系来发现内聚的社区结构.结合真实网络中的节点具有不同的行为和影响力,在充分考虑网络中节点的连接关系的基础上,提出一种基于中心极大团扩展的社区挖掘两阶段算法.第一阶段发现初始社区:首先找到网络中所有的内聚子团,然后找出k个分散、内聚且有影响力的中心极大团作为初始社区;第二阶段形成最终社区划分:对初始社区外节点,充分考虑不同邻居节点对其潜在的影响力,采用局部模块度扩展的方法将节点扩展到与其连接紧密的社区内.实验结果表明,该方法能够快速揭示出网络中的社区结构,相比FN算法,具有较高的准确度和模块度,相比GN算法,不需要预先知道社区个数.

社区结构、中心极大团、局部模块度

TP301(计算技术、计算机技术)

黑龙江省大学生创新创业训练计划项目201610236014;国家自然科学基金61172168

2017-08-24(万方平台首次上网日期,不代表论文的发表时间)

共7页

164-169,238

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

2017,(15)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn