期刊专题

10.3778/j.issn.1002-8331.1510-0211

基于PSO-BP算法的地理本体概念语义相似度度量

引用
针对现有度量方法中考虑因素不够全面和因子权重计算依据经验确定的不足,提出粒子群优化BP神经网络(PSO-BP)的地理本体概念语义相似度度量模型.该模型利用本体属性、本体结构和语义关系的相似度,结合权重信息计算概念的综合相似度;同时,利用粒子群算法优化的BP神经网络获取因子权重,避免现有方法中因子权重确定的人为主观干扰.最后,从基础地理信息概念中提取出200组样本,用其中190组作为训练集,对神经网络模型进行训练,以获取权重;剩余10组作为测试集.将该模型和几种常用算法进行对比,通过分析测试集的各算法求解结果和专家判定结果之间的相关系数,结果表明该模型计算地理本体概念的相似度更为准确,符合人类认知特性,效果更好.

语义相似度度量、地理本体、反向传播(BP)神经网络、粒子群算法

53

P208(一般性问题)

2017-05-17(万方平台首次上网日期,不代表论文的发表时间)

共6页

32-37

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

53

2017,53(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn