期刊专题

10.3778/j.issn.1002-8331.1510-0207

快速大样本同步聚类

引用
针对现有的Sync算法具有较高时间复杂度,在处理大样本数据集时有相当的局限性,提出了一种快速大样本同步聚类算法(Fast Clustering by Synchronization on Large Sample,FCSLS)。首先将基于核密度估计(KDE)的抽样方法对大样本数据进行抽样压缩,再在压缩集上进行同步聚类,通过Davies-Bouldin指标自动寻优到最佳聚类数,最后,对剩下的大规模数据进行聚类,得到最终聚类结果。通过在人造数据集以及UCI真实数据集上的实验, FCSLS可以在大规模数据集上得到任意形状、密度、大小的聚类且不需要预设聚类数。同时与基于压缩集密度估计和中心约束最小包含球技术的快速压缩方法相比,FCSLS在不损失聚类精度的情况下,极大地缩短了同步聚类算法的运行时间。

核密度估计(KDE)、抽样、同步、大样本、聚类

52

TP391.4(计算技术、计算机技术)

国家自然科学基金No.61272210。

2016-12-20(万方平台首次上网日期,不代表论文的发表时间)

共9页

159-166,219

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

52

2016,52(23)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn