10.3778/j.issn.1002-8331.1603-0074
基于Spark计算框架的高铁振动数据经验模态分解
高铁的安全问题越来越受到人们关注,通过安装在高铁上的传感器可以采集到列车运行过程中的振动信号。分析和处理采集到的振动信号,可以对列车运行过程中出现的故障进行诊断。经验模态分解(EMD)适用于将非线性非平稳的信号分解为若干个固有模态函数之和,它在信号分析和处理领域起着至关重要的作用。但列车在不断运行过程中采集的数据量非常大,信号处理的速度成为了瓶颈。因此,借助大数据处理框架Spark基于分布式的内存运算、弹性式分布式数据集等特点,提出了基于Spark的并行化EMD算法,并利用实际数据进行算法评测,通过Speedup、Sizeup、Scaleup三个指标对实验结果进行分析,得到该并行化方法在三个指标上都有良好的效果,表明该算法可以为大量的振动信号分解提供可靠的解决方案。
振动信号、经验模态分解、Spark、并行化
52
TP312(计算技术、计算机技术)
国家自然科学基金No.61573292。
2016-10-26(万方平台首次上网日期,不代表论文的发表时间)
共6页
103-107,176