期刊专题

10.3778/j.issn.1002-8331.1603-0323

基于密度的异常数据检测算法GSWCLOF

引用
为改善有关数据流的异常数据检测方法中存在的检测准确度低和执行效率低等问题,根据数据挖掘技术理论,提出了一种新的基于密度的异常数据检测算法GSWCLOF。该算法引入滑动时间窗口和网格的理念,在滑动时间窗口内利用网格将数据细分,同时利用信息熵对所有网格内的数据进行剪枝和筛选,从而剔除绝大部分正常的数据,最后再利用离群因子对剩下的数据进行最终判断。实验结果表明,该算法有效地提高了检测准确度和执行效率。

数据流检测、滑动窗口、网格、信息熵、离群因子

52

TP391(计算技术、计算机技术)

国家科技支撑计划No.2012BAF12B14;贵州省重大科技专项基金No.[2014]2001。

2016-11-02(万方平台首次上网日期,不代表论文的发表时间)

共5页

7-11

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

52

2016,52(19)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn