期刊专题

10.3778/j.issn.1002-8331.1510-0105

N-Best句法知识增强的统计机器翻译预调序模型

引用
源语言和目标语言的句法异构性对统计机器翻译(SMT)性能有重要影响。在基于短语的汉英统计机器翻译基础上,提出了一种基于N-best句法知识增强的源语言预调序方法。首先对源语言输入句子进行N-best句法分析,计算统计概率得到高可靠性子树结构,再根据词对齐信息从可靠性子树结构中抽取初始调序规则集。两种优化策略用于对初始规则集进行优化:基于中英文句法知识规则推导筛选和规则概率阈值控制机制。然后为减少短语内部调序,保证短语局部流利性,采用源语言短语翻译表为约束,使调序控制在短语块之间进行。最后根据获取的优化规则集和短语表约束条件对源语言端句子的句法分析树进行预调序。在基于NIST 2005和2008测试数据集上的汉英统计机器翻译实验结果表明,所提基于N-best句法知识增强的统计机器翻译预调序方法相对于基线系统,自动评价准则BLEU得分分别提高了0.68和0.83。

统计机器翻译、预调序模型、N-best句法树、调序规则、规则优化

52

TP391(计算技术、计算机技术)

国家自然科学基金No.61100085;陕西省自然科学基金No.2015JM6328。

2016-09-13(万方平台首次上网日期,不代表论文的发表时间)

共7页

160-165,176

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

52

2016,52(17)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn