10.3778/j.issn.1002-8331.1410-0199
基于压缩感知改进算法的MIMO-OFDM稀疏信道估计
结合压缩感知理论(CS),针对压缩采样匹配追踪算法在多输入多输出正交频分复用(MIMO_OFDM)系统信道估计应用中需要利用信号稀疏度的先验条件,而实际中稀疏度又难获得的情况,提出一种信号稀疏度自适应的压缩采样改进匹配追踪算法(CoMSaMP)。该算法采用具有理论支撑的原子弱选择标准作为预选方案,并设置首次裁剪阈值来减少算法多余的迭代,降低算法在信道估计中的复杂度,裁剪方式的改进保证了重构精度的提高,最终实现MIMO-OFDM稀疏信道估计中信号的稀疏度自适应。仿真结果表明:与原算法相比,该算法在同等信噪比条件下具有更优的信道估计性能,从而提高了频谱利用率,同时降低了复杂度,在稀疏度较高时,提出的算法具有更好的对噪声的抗干扰能力。
压缩感知、正交频分复用、稀疏信道估计、压缩采样匹配追踪
52
TP393.17(计算技术、计算机技术)
2016-09-13(万方平台首次上网日期,不代表论文的发表时间)
共6页
112-117