期刊专题

10.3778/j.issn.1002-8331.1407-0613

融合时空信息的短时交通流预测

引用
为了准确描述交通流的时空演化过程并提高交通流短时预测的精度,融合时空交通流信息,即时间维度的交通流量信息和空间维度的路网耦合信息,构造基于GM(1,N)-Markov 链的组合预测模型。将预测路段与关联路段看作是一个灰色系统并对其进行灰关联分析,通过对灰关联度最低阈值的设定,实现了空间信息的深度挖掘和对无效信息的过滤清洗;利用多维GM(1,N)模型对预测点与强关联点作全局、系统的分析预测,并针对GM(1,N)对随机性较大的数列可能出现预测失效的问题,引入马尔科夫链对模型进行修正;利用VISSIM对模型进行仿真验证,分别以2 min、5 min、10 min为时间间隔进行仿真模拟,预测平均相对误差分别为9.30%、5.95%、3.20%,模型精度均为优,证实模型是有效的。

智能交通、交通流预测、灰色系统、马尔科夫链

52

U491(交通工程与公路运输技术管理)

四川省科技支撑计划项目No.2014GZ0019;四川省重点实验室研究基金项目No.szjj2011-031。

2016-07-15(万方平台首次上网日期,不代表论文的发表时间)

共5页

246-250

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

52

2016,52(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn