期刊专题

10.3778/j.issn.1002-8331.1404-0415

行为识别中基于GA优化的加速度特征选择方法

引用
在基于加速度信号的人体行为识别中,LDA是较常用的特征降维方法之一,然而LDA并不直接以训练误差作为目标函数,无法保证获得训练误差最小的投影空间。针对这一情况,采用基于GA优化的LDA进行特征选择。提取加速度信号特征,利用PCA方法解决“小样本问题”,通过GA调整LDA中类间离散度矩阵的特征值矢量,使获得的投影空间训练误差最小。采用SVM对7种日常行为进行分类。实验结果表明,与单独采用PCA和采用PCA+LDA方法相比,基于GA优化的LDA算法在保证较高识别率的同时能有效降低特征维数并减小分类误差,最终测试样本的识别率可达95.96%。

行为识别、加速度传感器、主成分分析(PCA)、线性判别分析(LDA)、遗传算法(GA)、支持向量机(SVM)

52

TP212.9(自动化技术及设备)

国家自然科学基金No.61174021;中央高校基本科研业务费专项资金No.JUSRP21129;江苏高校优势学科建设工程资助项目。

2016-04-27(万方平台首次上网日期,不代表论文的发表时间)

共6页

139-143,166

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

52

2016,52(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn