10.3778/j.issn.1002-8331.1504-0015
基于流形学习和支持向量机的太赫兹谱分类
太赫兹时域光谱技术是一门新兴光谱检测技术,广泛应用于安检及反恐、生物医学和食品质量检测等方面.太赫兹谱的分类识别技术是太赫兹光谱检测技术的一个重要环节.由于受到噪声的影响,太赫兹谱可能在高维空间中成复杂的非线性分布,传统的分类方法难以取得理想的分类效果.流形学习和支持向量机都是当前机器学习领域的研究热点,都采取了核方法来解决非线性问题,正因为两者之间有很多共通之处,将这两种方法充分结合提出了一种称之为ISOMAP-SVM的新算法.这种新算法拥有比传统的支持向量机算法更快的训练速度和更好的分类效果.实验结果表明利用新算法可以实现对不同种类药品的识别,为太赫兹光谱技术用于药品的检测和识别提供了一种新的有效方法.
太赫兹时域光谱、流形学习、支持向量机、核方法
51
TP391(计算技术、计算机技术)
2016-01-14(万方平台首次上网日期,不代表论文的发表时间)
共5页
141-144,175