期刊专题

10.3778/j.issn.1002-8331.1403-0080

特征加权的核学习方法

引用
提出了一种特征加权的核学习方法,其主要为了解决当前核方法在分类任务中对所有数据特征的同等对待的不足。在分类任务中,数据样本的每个特征所起的作用并不是相同的,有些特征对分类任务有促进作用,应该给予更多的关注。提出的算法集成了多核学习的优势,以加权的方式组合不同的核函数,但所需的计算复杂度更低。实验结果证明,提出的算法与支持向量机、多核学习算法相比,分类准确度优于支持向量机和多核学习算法,在计算复杂度上略高于支持向量机,但远远低于多核学习算法。

特征加权、支持向量机、核学习

TP391(计算技术、计算机技术)

2015-08-06(万方平台首次上网日期,不代表论文的发表时间)

共5页

104-107,119

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

2015,(14)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn