10.3778/j.issn.1002-8331.1306-0031
基于Gabor定向模式的人脸识别方法
为了从Gabor滤波后的幅值图中提取更加有效的分类特征,提出了一种新的基于Gabor定向模式(GDP)的人脸识别方法。首先对人脸图像进行多尺度多方向的Gabor滤波,然后提出了一种新的GDP算子通过对每种尺度下所有方向的Gabor幅度图进行编码得到每种尺度对应的GDP模式图,最后将所有GDP模式图的直方图向量串联作为最终的人脸表示。由于GDP算子同时对同一尺度下的所有方向上的Gabor幅度响应进行编码,因而GDP特征不仅对外界变化具有较好的鲁棒性,而且能够显著降低最终的特征长度。在ORL和CAS-PEAL人脸库上的实验结果显示GDP方法能以更小的特征长度获得优于传统LGBP及LGXP等方法的识别效果,证明了方法的有效性。
人脸识别、Gabor滤波、Gabor定向模式、特征提取
TP391(计算技术、计算机技术)
2015-06-01(万方平台首次上网日期,不代表论文的发表时间)
共4页
166-169