期刊专题

10.3778/j.issn.1002-8331.1304-0457

针对标记数据不足的数据流分类器

引用
大部分数据流分类算法解决了数据流无限长度和概念漂移这两个问题。但是,这些算法需要人工专家将全部实例都标记好作为训练集来训练分类器,这在数据流高速到达并需要快速分类的环境中是不现实的,因为标记实例需要时间和成本。此时,如果采用监督学习的方法来训练分类器,由于标记数据稀少将得到一个弱分类器。提出一种基于主动学习的数据流分类算法,该算法通过选择全部实例中的一小部分来人工标记,其中这小部分实例是分类置信度较低的样本,从而可以极大地减少需要人工标记的实例数量。实验结果表明,该算法可以在数据流存在概念漂移情况下,使用较少的标记数据对数据流训练出分类器,并且分类效果良好。

数据流、分类、概念漂移、主动学习

TP181(自动化基础理论)

2015-03-30(万方平台首次上网日期,不代表论文的发表时间)

共5页

124-128

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

2015,(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn