期刊专题

10.3778/j.issn.1002-8331.1304-0435

神经网络和模板匹配在自动打分系统中的应用

引用
为提高实验教学中实验报告成绩的录入效率,设计了一个基于图像处理技术的手写字符识别系统。以VISUAL C++6.0为编译环境,MFC为图形界面开发平台,通过CCD摄像头进行图像采集,根据图像识别原理对图片进行预处理,并分别采用BP神经网络和模板匹配两种不同方法对实验报告成绩及学号字符进行识别,比较了两种方法在识别准确率和速度方面的优劣。测试结果表明,BP神经网络法比模板匹配法识别的准确率更高,而后者识别速度较后者快10倍左右,自动打分系统较传统的手工录入法大幅度提高了数据输入速度。该系统可以应用于各类实验报告成绩的快速录入。

图像处理、模板匹配、反向传播(BP)神经网络、手写字符识别

TP31(计算技术、计算机技术)

国家自然科学基金No.61178017;中南大学实验室建设与开放基金No.201114。

2015-03-12(万方平台首次上网日期,不代表论文的发表时间)

共5页

251-254,265

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

2015,(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn