期刊专题

10.3778/j.issn.1002-8331.1308-0316

小麦叶部常见病害特征提取及识别技术研究

引用
选取小麦叶部常见病害图像,利用图像处理技术进行病害种类的识别。将图像由RGB彩色空间转换到HSV颜色空间,提取相关的颜色特征(色相和饱和度),接着提取几何形状特征(周长、面积、矩形度、似圆度、偏心率等),通过分析样本图像得到每种病害的特征值范围,利用特征值对未知样本进行病害识别。系统以白粉病和锈病(叶锈病、条锈病和秆锈病)为研究对象,根据颜色特征对白粉病和锈病加以识别,然后根据几何形状特征对叶锈病、条锈病和秆锈病进行识别,操作简单方便,识别准确率达96%以上。实验结果表明,选取的颜色特征和几何形状特征对4种小麦叶部常见病害的识别是有效且可行的。

小麦病害、特征提取、图像识别

TP399(计算技术、计算机技术)

国家高技术研究发展计划863No.2013AA10230402;中央高校基本科研业务费No.ZD2012018,No.QN2013051;西北农林科技大学博士启动基金No.Z111021301。

2014-04-11(万方平台首次上网日期,不代表论文的发表时间)

共4页

154-157

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

2014,(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn