期刊专题

10.3778/j.issn.1002-8331.1308-0377

一种数值属性的深度置信网络分类方法

引用
深度置信网络是个包含多个受限玻尔兹曼机的深层架构。针对深度置信网络分类时由于受限玻尔兹曼机的输入一般是二值向量而造成的信息的丢失从而使分类效果降低的问题,提出了通过在sigmoid单元中增加噪声来将输入缩放到[0,1]区间,使用带有一个高斯隐藏节点的顶层受限玻尔兹曼机实现分类功能的一种数值属性深度置信网络分类方法。深度置信网络和受限玻尔兹曼机可以作为特征提取方法也可以认为是带有训练的初始权值的神经网络。由于连接权值的初始化而不仅仅是神经网络的随机权值,深度置信网络分类应该比原有的传统的神经网络分类拥有更好的性能。在UCI的多个数据集上进行对比验证,实验结果表明深度置信网络分类方法比传统的SVM算法拥有更高的准确性。

数值属性、分类、深度置信网络、联想记忆

TP391(计算技术、计算机技术)

国家青年科学基金No.61003162;国家科技支撑计划No.2013bah12f01。

2014-01-23(万方平台首次上网日期,不代表论文的发表时间)

共5页

112-115,174

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

2014,(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn