期刊专题

10.3778/j.issn.1002-8331.1304-0199

联合选择特征和分类器参数模型的模拟电路故障诊断

引用
为了提高模拟电路故障诊断准确率,提出一种联合选择特征选和分类器参数模型的模拟电路故障诊断方法(Feature-Classifier)。将模拟电路故障特征子集和分类器参数编码成为粒子,然后粒子根据目标函数通过信息交流和互相协作找到最优特征子集和分类器参数,并根据最优特征子集对样本进行约简;分类器根据最优参数对约简后样本进行训练建立模拟电路故障诊断模型,并通过仿真实例对性能进行测试。结果表明,相对于其他模拟电路故障诊断方法,Feature-Classifier能够较快找到最优特征子集与分类器参数,不仅提高了模拟电路故障诊断准确率,并加快了故障诊断速度。

模拟电路、故障诊断、特征选择、分类器参数、粒子群优化算法

TP183(自动化基础理论)

2014-01-09(万方平台首次上网日期,不代表论文的发表时间)

共4页

251-254

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

2014,(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn