期刊专题

10.3778/j.issn.1002-8331.1211-0017

一种融合了异常数据识别的CMM改进算法

引用
针对聚类过程中有意义的异常数据难以识别的问题,在改进CMM算法的基础上,提出了一种融合了异常数据识别的层次聚类算法.采用CMM方法提出的原子簇思想,通过重新定义簇中心、噪声判断标准以及改进循环机制等手段提高聚类准确性及算法效率.提出了异常数据的概念和定义,并将其识别算法引入聚类过程过程.基于仿真及实际数据的实验结果证明,该算法能够根据设定参数准确识别异常数据,同时其聚类准确性及性能针对CMM算法也有了相应提高.

数据挖掘、聚类、异常数据识别、多中心点聚类(CMM)算法

TP181(自动化基础理论)

2013-04-28(万方平台首次上网日期,不代表论文的发表时间)

共5页

120-124

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn