期刊专题

10.3778/j.issn.1002-8331.1109-0044

基于改进贝叶斯决策的邮件过滤

引用
探讨了基于概率阈值的贝叶斯邮件过滤模型的局限性:由于很少考虑所设定阈值的适用性和实用性,损失了一定的召回率.改进贝叶斯决策,提出了基于随机变量的较小错误分类决策方法;针对邮件处理的特殊性,进一步提出了基于随机变量的较小风险分类决策方法.实验结果表明,处理普通文本分类问题时,前者的分类决策效果更好;而后者在处理邮件问题时性能更优,能够在保持较小误判风险的同时,提高贝叶斯邮件过滤器的召回率以及 F 值.

垃圾邮件、邮件过滤、概率、阈值、分类决策

TP302.1(计算技术、计算机技术)

2013-04-28(万方平台首次上网日期,不代表论文的发表时间)

共4页

98-101

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn