10.3778/j.issn.1002-8331.1201-0147
维吾尔语连续语音识别声学模型优化研究
综合了语音识别中常用的高斯混合模型和人工神经网络框架优点的Tandem特征提取方法应用于维吾尔语声学模型训练中,经过一系列后续处理,将原始的MFCC特征转化为Tandem特征,以此作为基于隐马尔可夫统计模型的语音识别系统的输入,并使用最小音素错误区分性训练准则训练声学模型,进而完成在测试集上的识别实验.实验结果显示,Tandem区分性训练方法使识别系统的单词错误率比原先的基于最大似然估计准则的系统相对减少13%.
维吾尔语、语音识别、最小音素错误、Tandem特征
49
TN912.34
国家自然科学基金61063024;新疆多语种信息处理重点实验室开放课题049807
2013-03-21(万方平台首次上网日期,不代表论文的发表时间)
共3页
145-147