期刊专题

10.3778/j.issn.1002-8331.1207-0260

基于多重核学习支持向量机短期负荷预测研究

引用
近年来,支持向量机(SVM)方法在电力系统负荷预测领域的应用研究成为了热点,鉴于传统的标准支持向量机方法在预测时间和预测精度方面的不足,首次将多重核支持向量回归方法(Multiple Kernel Learning,MKL)应用于电力系统短期负荷预测领域.通过在混合核空间求解二次约束下的二次规划问题实现多重核支持向量回归算法.该方法较标准的支持向量回归算法,不仅可以提高预测性能,而且能够减少支持向量的个数.实际算例表明,该方法能够有效地提高预测精度,缩短预测时间,具有良好的泛化性能.

短期负荷预测、多重核学习、支持向量机、核函数

48

TM715(输配电工程、电力网及电力系统)

2013-01-21(万方平台首次上网日期,不代表论文的发表时间)

共5页

207-211

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

48

2012,48(33)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn