期刊专题

10.3778/j.issn.1002-8331.2011.36.058

势能记忆梯度优化的协同模式分类方法

引用
传统的协同模式分类学习方法是依据原型向量再通过伪逆或M-P广义逆的方法求出满足一定关系式的伴随向量,当样本维数大时,这种方法学习过程较慢,特别当样本维数有变化时传统的方法就不太适用了;协同势能函数优化的方法是直接利用协同动力学过程,来获得原型向量和伴随向量的收敛值,相比于传统的方法具有一定的优势.将最优化理论引入到协同进化的动力学过程,以加快学习过程的收敛,并以记忆梯度法替代了传统的梯度下降的算法进行势能函数的优化,来同时进行原型向量和伴随向量的学习,新方法能显著地提高收敛速度并获得较优的原型向量.通过图像的分类识别表明,相对于传统的方法,能提高识别率且收敛更好.

协同模式识别、最优化方法、协同势能函数、记忆梯度法

47

TP18(自动化基础理论)

2012-03-16(万方平台首次上网日期,不代表论文的发表时间)

共4页

211-214

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

47

2011,47(36)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn