期刊专题

10.3778/j.issn.1002-8331.2011.32.012

求解TSP的新量子蚁群算法

引用
鉴于蚁群算法(ACA)在求解TSP时表现出的优越性,以及量子进化算法(QEA)在求解组合优化问题时表现出的高效性,将ACA与QEA的算法思想进行融合,提出一种新的求解TSP的量子蚁群算法.该算法对各路径上的信息素进行量子比特编码,设计了一种新的信息素表示方式,即量子信息素;采用量子旋转门及最优路径对信息素进行更新,加快算法收敛速度;为了避免搜索陷入局部最优,设计了一种量子交叉策略,以改善种群信息结构.仿真实验结果表明了该算法具有较快的收敛速度和全局寻优能力,性能明显优于ACS.

量子进化、蚁群算法、旅行商问题(TSP)、组合优化

47

TP301.6(计算技术、计算机技术)

安徽省自然科学基金090412072

2012-03-16(万方平台首次上网日期,不代表论文的发表时间)

共4页

42-44,86

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

47

2011,47(32)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn