10.3778/j.issn.1002-8331.2011.24.051
基于L-ISOMAP降维的快速模糊聚类算法
模糊C-均值聚类算法是非监督模式识别中广泛应用的算法之一.但是,FCM算法在迭代过程中需要大量的计算,尤其当特征向量维数较高时,使用聚类分堆训练,不仅效率低下,还有可能导致“维数灾难”.针对该问题,分析模糊C-均值聚类算法在高维特征分析过程中,聚类中心的求解问题是一个np-hard问题,为了提高模糊C-均值聚类算法在高维特征分析中的实时性与有效性,结合界标等距映射(L-ISOMAP)算法,提出了改进算法FCM-LI,先对样本初步分析,利用聚类结果及样本数据相关性,使用界标等距映射(L-ISOMAP)算法降维,在此基础上进一步分析,获得最终分析结果.通过实验证明,FCM-LI算法在高维数据分析过程中的有效性与实时性.
模糊C-均值聚类、等距映射、非线性降维
47
TP391(计算技术、计算机技术)
2012-01-14(万方平台首次上网日期,不代表论文的发表时间)
共5页
182-185,190