期刊专题

10.3778/j.issn.1002-8331.2010.01.041

基于PSO的LS-SVM特征选择与参数优化算法

引用
针对最小二乘支持向量机特征选择及参数优化问题,提出了一种基于PSO的LS-SVM特征选择与参数同步优化算法.首先产生若干种群(特征子集),然后用PSO算法对特征及参数进行优化.在UCI标准数据集上进行的仿真实验表明,该算法可有效地找出合适的特征子集及LS-SVM参数,且与基于遗传算法的最小二乘支持向量机算法(GALS-SVM)和传统的LS-SVM算法相比具有较好的分类效果.

最小二乘支持向量机、特征选择、参数优化、粒子群算法

46

TP301(计算技术、计算机技术)

2010-03-29(万方平台首次上网日期,不代表论文的发表时间)

共4页

134-136,229

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

46

2010,46(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn