10.3778/j.issn.1002-8331.2009.29.036
大规模数据集的增量式关联规则挖掘
商业活动和工程实践中通常会积累一些大规模的携带重要信息的数据,由于这种数据集经常有更新且数据量较大,在对它们进行增量式关联规则挖掘时,若采用基于传统的Apriori算法进行计算,一方面难以取得较好的效率;另一方面支持度设置过低会产生大量的冗余规则,设置过高则会把一些支持度不高但有用的规则过滤掉而导致算法对这些新规则感应迟钝.因此,借助遗传算法的相关机理,同时结合自然界的免疫进化理论及相关仿生机制,提出一种IOGA(Immune Optimization based Genetic Algorithm,基于免疫优化的遗传算法)增量式关联规则挖掘方法.通过实验表明,该方法应用于大规模数据集的增量式关联规则挖掘时,可以及时地感知规则的变更并发现有用的规则,减少了冗余规则的产生,同时挖掘效率也有明显提高.
免疫优化、遗传算法、关联规则、增量式挖掘
45
TP31(计算技术、计算机技术)
2009-11-27(万方平台首次上网日期,不代表论文的发表时间)
共5页
120-124