10.3778/j.issn.1002-8331.2008.09.007
基于偏好的多目标遗传算法
多目标优化问题中,人们往往只是时目标空间的某一区域感兴趣,因此这就需要在这一特定的区域能够得到比较稠密的Pareto解,但传统的方法权值法无法满足这种需求而且不能处理目标空间是非凸的情况,遗传算法虽然是现在公认的处理多目标优化问题比较有效的方法,但遗传算法是在目标空间内进行全空间寻优,因此最终得到的Pareto解是均匀分布的,这样遗传算法也不能满足人们的这一要求.针对这个问题提出了基于偏好的多目标遗传算法,把个人偏好加到优化过程中,利用偏好信息来引导优化方向,通过仿真把该算法和权值法、NSGA-Ⅱ进行比较,结果证明了该算法的可行性和有效性.
多目标优化、遗传算法、偏好、权值法、NSGA-Ⅱ
44
TP273.5(自动化技术及设备)
国家自然科学基金60674070
2008-05-26(万方平台首次上网日期,不代表论文的发表时间)
共3页
24-26