期刊专题

10.3321/j.issn:1002-8331.2002.19.033

基于Q-学习的模糊神经网络控制器

引用
神经模糊系统在机器人的智能控制中具有巨大的应用潜力,但已有的系统构造方法几乎都面临着样本资源匮乏这一巨大困难.为克服传统系统构造方法可能因样本获取困难而引起的"维数灾难"等问题,该文在模糊神经网络中引入了Q-学习机制,提出了一种基于Q-学习的模糊神经网络模型,从而赋予神经模糊系统自学习能力.文章最后给出了其在菅野模糊小车控制中的仿真结果.实验表明,在神经模糊系统中融入智能学习机制Q-学习是行之有效的;它可以被用来实现机器人智能行为的自学习.值得一提的是,该文的仿真实验在真实系统上同样是容易实现的,只要系统能提供作为评价信号的传感信息即可.

Q-学习、神经网络、模糊系统

38

TP273.24(自动化技术及设备)

2004-01-08(万方平台首次上网日期,不代表论文的发表时间)

共4页

93-96

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

38

2002,38(19)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn