期刊专题

10.3724/SP.J.1089.2024.19888

基于困难样本对激励的小样本图像分类方法

引用
使用少量标签样本训练得到的传统模型往往预测精度低、泛化能力弱,很难应用到实际生产中.针对小样本图像提出一种基于困难样本对激励分类方法,包括预训练阶段和元学习阶段.预训练阶段在基类数据集上训练编码器,并作为元学习阶段的初始特征编码器;元学习阶段将进一步优化此编码器,元训练过程使用本质特征法降低异常样本对质心的影响;结合度量学习与元学习设计了困难样本对激励损失函数,从样本对角度出发,在训练过程中引导模型扩大正负样本间距离,使同类样本更加紧凑.在公开数据集mini-ImageNet,tiered-ImageNet上进行实验的结果表明,分类精度分别为64.12%,70.15%,验证了所提方法的有效性和可行性.

困难样本对、小样本学习、元学习、度量学习

36

TP391.41(计算技术、计算机技术)

2024-09-09(万方平台首次上网日期,不代表论文的发表时间)

共9页

895-903

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

36

2024,36(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn