基于困难样本对激励的小样本图像分类方法
使用少量标签样本训练得到的传统模型往往预测精度低、泛化能力弱,很难应用到实际生产中.针对小样本图像提出一种基于困难样本对激励分类方法,包括预训练阶段和元学习阶段.预训练阶段在基类数据集上训练编码器,并作为元学习阶段的初始特征编码器;元学习阶段将进一步优化此编码器,元训练过程使用本质特征法降低异常样本对质心的影响;结合度量学习与元学习设计了困难样本对激励损失函数,从样本对角度出发,在训练过程中引导模型扩大正负样本间距离,使同类样本更加紧凑.在公开数据集mini-ImageNet,tiered-ImageNet上进行实验的结果表明,分类精度分别为64.12%,70.15%,验证了所提方法的有效性和可行性.
困难样本对、小样本学习、元学习、度量学习
36
TP391.41(计算技术、计算机技术)
2024-09-09(万方平台首次上网日期,不代表论文的发表时间)
共9页
895-903