期刊专题

10.3724/SP.J.1089.2023.19641

用于车辆重识别的部件耦合Transformer网络

引用
基于卷积神经网络的车辆重识别模型在执行卷积和池化操作时,不可避免地会出现全局感受野狭小和局部信息丢失的情况,当光照、视角和分辨率等发生剧烈变化时,导致车辆重识别的鲁棒性和精确性急剧下降.为此,提出了部件耦合Transformer的车辆重识别网络,通过堆叠部件耦合Transformer块来搭建重识别模型,每一个部件耦合Transformer块利用部件自适应嵌入模块提取区分性的局部特征和Transformer层提取鲁棒性的全局特征.首先,部件自适应嵌入模块按照位置和伸缩量动态划分和调整特征图,增强模型对局部部件信息的感知能力;其次,Transformer层中利用自注意力机制增强网络模型对全局特征的表示能力;最后,部件自适应嵌入模块和Transformer层之间的耦合关系促进全局和局部特征协同合作.在VeRi-776 和VehicleID数据集上的实验结果表明,CMC@1/CMC@5 分别达到 0.970/0.988 和 0.865/0.985,优于对比模型.

车辆重识别、Transformer、部件自适应嵌入

35

TP391(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;江苏省自然科学基金;江苏省自然科学基金;江苏省研究生科研与实践创新计划项目

2023-11-14(万方平台首次上网日期,不代表论文的发表时间)

共10页

1289-1298

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

35

2023,35(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn