利用Capped核范数正则化的人体运动捕获数据恢复
结合人体运动数据的低秩性、噪声稀疏性和时序稳定性,将人体运动捕获数据恢复问题建模为低秩矩阵填充问题.不同于传统方法采用核范数作为矩阵秩函数的凸松弛,引入了非凸的矩阵 Capped 核范数(CaNN).首先,建立基于CaNN正则化的人体运动捕获数据恢复模型;其次,利用交替方向乘子法,结合截断参数自适应学习与(逆)离散余弦傅里叶变换对模型进行快速求解;最后,在CMU数据集和HDM05 数据集上,将CaNN模型与经典的TSMC,TrNN,IRNN-Lp和TSPN模型进行对比实验.恢复误差和视觉效果比较结果表明,CaNN能够有效地对失真数据进行恢复,且恢复后的运动序列与真实运动序列逼近度较高.
运动捕获、低秩结构、矩阵填充、Capped核范数、交替方向乘子法
35
TP391.41(计算技术、计算机技术)
国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;江西省自然科学基金;江西省自然科学基金
2023-11-14(万方平台首次上网日期,不代表论文的发表时间)
共13页
1184-1196