期刊专题

10.3724/SP.J.1089.2023.19379

多尺度小波池化协方差网络:对噪声鲁棒的病理学图像分类算法

引用
将基于深度学习的图像分类方法用于辅助病理学诊断优势突出,但获取病理学切片过程中产生的噪声会影响网络的泛化性能,进而降低分类算法的准确率.针对该问题,提出了一种鲁棒的病理学图像分类算法——多尺度小波池化协方差(multi-scale wavelet pooling covariance,MWPC)网络.MWPC网络主要由小波池化层、复合卷积层、多尺度特征融合和协方差特征提取层 4 个核心模块构成,其中小波池化层在抑制噪声影响的同时,保护了有效特征不受损失.多尺度特征融合将浅层特征与深层特征结合,使深层特征能够保留更多图像细节.协方差特征提取层可以获取图像的高阶统计特征,提高网络的泛化性能.在病理图像数据集上的测试结果表明,MWPC 网络针对组织病理学图像分块级别的五分类任务,在无噪声条件下准确率可以达到 90.90%,比 ResNet 提高 1.68%,比 Inception-v3分类网络提高 0.43%;在模拟椒盐噪声、高斯噪声和柯西噪声等条件下,其噪声鲁棒性能提升明显,且能够降低平均噪声误差.多种网络模块的消融实验结果表明,MWPC网络能够提高网络分类性能和噪声鲁棒性.

病理学图像、噪声鲁棒、小波池化、多尺度特征融合、协方差特征

35

TP391.41(计算技术、计算机技术)

国家自然科学基金;湖南省高新技术产业科技创新引领计划

2023-06-27(万方平台首次上网日期,不代表论文的发表时间)

共15页

538-552

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

35

2023,35(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn