期刊专题

10.3724/SP.J.1089.2023.19280

面向跨模态行人重识别的双向动态交互网络

引用
为了解决当前跨模态行人重识别算法因采用权值共享的卷积核而造成模型针对不同输入动态调整能力差,以及现有方法因仅使用高层粗分辨率的语义特征而造成信息丢失的问题,提出一种双向动态交互网络的跨模态行人重识别方法.首先通过双流网络分别提取不同模态各个残差块后的全局特征;然后根据不同模态的全局内容动态地生成定制化卷积核,提取模态特有信息,并将其作为模态互补信息在模态间进行双向传递以缓解模态异质性;最后对各层不同分辨率的特征进行相关性建模,联合学习跨层的多分辨率特征以获取更具有判别性和鲁棒性的特征表示.在SYSU-MM01和RegDB跨模态行人重识别数据集上的实验结果表明,所提方法在第一命中率(R1)分别高于当前最好方法4.70%和2.12%;在平均检索精度(mAP)上分别高于当前最好方法4.30%和2.67%,验证了该方法的有效性.

行人重识别、跨模态、动态卷积、跨层多分辨率、卷积神经网络

35

TP391.41(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;安徽省高校协调创新项目;安徽省高校协调创新项目;安徽省重点研究与开发计划项目;安徽省高等学校省级自然科学研究项目

2023-05-23(万方平台首次上网日期,不代表论文的发表时间)

共12页

371-382

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

35

2023,35(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn