期刊专题

10.3724/SP.J.1089.2023.19248

基于分裂倒残差的轻量化目标检测算法

引用
针对工业应用领域中终端设备计算能力较低且对检测算法的响应速度存在较高需求的问题,提出基于分裂倒残差的轻量型实时目标检测算法.首先,在主干网络中使用分裂倒残差结构,削减网络结构的参数量以及运算次数,以达到加快推理速度的目的;其次,引入自适应上下文感知模块以及轻量型双向特征融合模块,旨在提升特征信息交流、增加对小目标检测性能的同时,避免增加额外的学习参数与推理.实验结果表明,文中算法在参数量仅有7.5?105的情况下,MS COCO数据集中检测精度达到21.1%,移动端检测速度达到48帧/s,远超对比算法,该检测算法更适合在无法提供高计算能力的移动端设备上完成目标检测任务.

深度学习、目标检测、残差结构、双向特征融合

35

TP391.41(计算技术、计算机技术)

国家重点研发计划2020YFB1711902

2023-03-27(万方平台首次上网日期,不代表论文的发表时间)

共9页

66-74

暂无封面信息
查看本期封面目录

计算机辅助设计与图形学学报

1003-9775

11-2925/TP

35

2023,35(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn