基于注意力机制的密集残差融合与空间局部滤波低光照去雾算法
低光照场景的雾霾图像在去雾过程中易产生颜色失真、斑块和伪影等现象,针对此问题,提出一种适用于低光照场景的基于注意力机制的密集残差融合与空间局部滤波去雾算法.首先利用密集残差块增加神经网络深度,使网络学习更高级的特征信息;然后引入空间与通道注意力机制对特征进行过滤和筛选,使网络可以区分光照不均匀区域,解决颜色失真等问题;采用空间局部滤波增强的方法,提高去雾结果的对比度、清晰度和能见度;最后设计了联合损失函数约束网络的学习,避免串联结构的误差放大以及学习混合退化.在PyTorch环境下,用夜间城市合成雾霾数据集NHR进行测试,并与现有的FFANet,GridDehaze等去雾算法进行对比.实验结果表明,与其他去雾算法相比,所提算法的峰值信噪比提升8.01~14.16 dB,结构相似度提高0.10~0.36.所提算法还解决了颜色失真、斑块和伪影等问题.
图像去雾、低光照增强、注意力机制、密集残差、局部滤波
34
TP391.41(计算技术、计算机技术)
国家自然科学基金61672228
2023-02-10(万方平台首次上网日期,不代表论文的发表时间)
共8页
1842-1849